Experiments and theory of an upstream ionization instability excited by an accelerated electron beam through a current-free double layer
نویسندگان
چکیده
A low-frequency instability varying from 10 to 20 kHz has been discovered in the presence of a current-free double layer !DL" in a low-pressure expanding helicon plasma. The instability is observed using various electrostatic probes, such as Langmuir probes floating or biased to ion saturation and emissive probes measuring the plasma potential. A retarding field energy analyzer measuring the ion energy distribution function downstream of the double layer is used together with the LP to simultaneously observe the DL and the instability, confirming their coexistence. The frequency of the instability decreases with increasing neutral pressure, increases with increasing magnetic field in the source and increases with increasing rf power. A theory for an upstream ionization instability has been developed, in which electrons accelerated through the DL increase the ionization upstream and are responsible for the observed instability. The theory is in good agreement with the experimental results and shows that the frequency increases with the potential drop of the double layer and with decreasing chamber radius. © 2006 American Institute of Physics. #DOI: 10.1063/1.2398929$
منابع مشابه
Upstream ionization instability associated with a current-free double layer.
A low frequency instability has been observed using various electrostatic probes in a low-pressure expanding helicon plasma. The instability is associated with the presence of a current-free double layer (DL). The frequency of the instability increases linearly with the potential drop of the DL, and simultaneous measurements show their coexistence. A theory for an upstream ionization instabilit...
متن کاملA theory for formation of a low pressure, current-free double layer
A theory is developed for the formation of a low pressure, current-free double layer just inside an upstream dielectric source chamber connected to a larger diameter, downstream metallic expansion chamber. The double layer is described using four groups of charged particle: thermal ions, mono-energetic accelerated ions flowing downstream, accelerated electrons flowing upstream and thermal elect...
متن کاملTheory for formation of a low-pressure, current-free double layer.
A diffusion-controlled theory is developed for the formation of a low-pressure, current-free double layer just inside an upstream insulating source chamber connected to a larger diameter, downstream chamber. The double layer is described using four groups of charged particles: thermal ions, monoenergetic accelerated ions flowing downstream, accelerated electrons flowing upstream, and thermal el...
متن کاملNonlinear Flow-Induced Flutter Instability of Double CNTs Using Reddy Beam Theory
In this study, nonlocal nonlinear instability and the vibration of a double carbon nanotube (CNT) system have been investigated. The Visco-Pasternak model is used to simulate the elastic medium between nanotubes, on which the effect of the spring, shear and damping of the elastic medium is considered. Both of the CNTs convey a viscose fluid and a uniform longitudinal magnetic field is applied t...
متن کاملDynamic Instability Analysis of Embedded Multi-walled Carbon Nanotubes under Combined Static and Periodic Axial Loads using Floquet–Lyapunov Theory
The dynamic instability of single-walled carbon nanotubes (SWCNT), double-walled carbon nanotubes (DWCNT) and triple-walled carbon nanotubes (TWCNT) embedded in an elastic medium under combined static and periodic axial loads are investigated using Floquet–Lyapunov theory. An elastic multiple-beam model is utilized where the nested slender nanotubes are coupled with each other through the van d...
متن کامل